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Summary. Time series studies have provided strong evidence of an association between
increased levels of ambient air pollution and increased hospitalizations, typically at a single
lag of 0, 1 or 2 days after an air pollution episode. Two important scientific objectives are to
understand better how the risk of hospitalization that is associated with a given day’s air pol-
lution increase is distributed over multiple days in the future and to estimate the cumulative
short-term health effect of an air pollution episode over the same multiday period. We propose
a Bayesian hierarchical distributed lag model that integrates information from national health
and air pollution databases with prior beliefs of the time course of risk of hospitalization after
an air pollution episode. This model is applied to air pollution and health data on 6.3 million
enrollees of the US Medicare system living in 94 counties covering the years 1999–2002. We
obtain estimates of the distributed lag functions relating fine particulate matter pollution to hos-
pitalizations for both ischaemic heart disease and acute exacerbation of chronic obstructive
pulmonary disease, and we use our model to explore regional variation in the health risks
across the USA.
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1. Introduction

Time series studies of air pollution and health in the USA and around the world have provided
consistent evidence of an adverse short-term effect of ambient air pollution levels on mortality
and morbidity (Health Effects Institute, 2003; Pope and Dockery, 2006). In particular, multi-
site studies, which combine information from many locations by using national or regional
databases, have produced robust and consistent results demonstrating an adverse health effect
that is associated with short-term exposure to particulate matter (PM) and ozone. The National
Morbidity, Mortality, and Air Pollution Study in the USA and the ‘Air pollution and health:
a European approach’ study in Europe are prominent examples of such multisite time series
studies (Bell et al., 2004; Peng et al., 2005; Katsouyanni et al., 2001; Samoli et al., 2003). More
recently, the Medicare Air Pollution Study (MCAPS) showed a strong association between fine
PM (PM less than 2.5 μm in aerodynamic diameter) and hospitalization for cardiovascular and
respiratory diseases in 204 US counties (Dominici et al., 2006).
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The majority of previous time series studies of the health effects of PM have generally
employed single-lag models that use a fixed exposure lag of l days, assuming that all of the effect
of air pollution on health is realized exactly l days in the future. For example, ambient PM levels
are often compared with rates of hospitalization on the same day (l = 0) or the following day
(l =1). Although such an assumption might be plausible for modelling a given individual’s re-
sponse, it is less realistic for describing population level associations since it is unlikely that every
member of the population responds to increases in air pollution at the same interval of time.
Rather, people will generally respond to an increase in pollution levels at different intervals of
time and, when averaged across the population, this response function would appear smooth
(Seemungal et al., 2000).

An alternative approach to the single-lag exposure is to use a distributed lag model (DLM)
which allows the effect of a single day’s increase in air pollution levels to be distributed over
multiple days after the increase, thus providing a more informative tool for characterizing the
time course of risk of hospitalization. DLMs provide an estimate of the distributed lag function,
which describes the change in the relative risk in a multiday period after a given day’s increase
in air pollution.

DLMs have been used for decades in economics (Almon, 1965; Leamer, 1972; Shiller, 1973)
and have been applied more recently in the area of environmental epidemiology. Schwartz (2000)
used both unconstrained and constrained (polynomial) distributed lag functions to estimate the
effects of PM on daily mortaliy. Zanobetti et al. (2000) extended some of this work and devel-
oped the generalized additive modelling methodology. Bell et al. (2004) and Huang et al. (2005)
studied the relationship between ozone and daily mortality in the USA and applied both single-
lag and constrained DLMs. In general, DLMs will be applicable in areas where the association
between an input (or exposure) and a response (or health outcome) can be expected to play out
over multiple time points in the future.

DLMs in the area of air pollution and health have primarily been applied to time series data
at an individual location such as a county or a city. Typically, a DLM is fitted to the data and
the estimated distributed lag function is then smoothed across lags by using a polynomial or
non-parametric smoother (e.g. Almon (1965), Corradi (1977) and Zanobetti et al. (2000)). Welty
et al. (2008) proposed a Bayesian model for estimating the distributed lag function in a time
series study of a single location. They introduce a prior distribution that constrains the shape
of the distributed lag function by allowing effects corresponding to early lags to take a wide
range of values whereas effects at more distant lags are constrained to be near zero and correl-
ated with each other. Through extensive simulation studies they showed that their proposed
approach is superior (in mean-squared error) to the standard application of penalized splines
under several possible shapes of the true distributed lag function. In a problem with potentially
many parameters of interest, constraining the distributed lag function in some manner is critical
for reducing the size of the model space.

In addition to the distributed lag function, another important target of inference is the cumu-
lative health effect of an increase in air pollution levels over a multiday period after the increase.
If the effect of air pollution on health is truly distributed over multiple days, then a relative risk
estimate that is obtained by fitting a single-lag model is likely to be biased. However, whether the
bias is positive or negative is not clear and either possibility might be considered plausible. For
example, Schwartz (2000) found that single-lag models substantially underestimated the effect
of PM on daily mortality and similar patterns have been found in other studies (Zanobetti et al.,
2002; Goodman et al., 2004; Roberts, 2005). An alternative hypothesis, which is sometimes
referred to as the ‘harvesting’ or ‘mortality displacement’ hypothesis, claims that air pollution
episodes deplete a frail pool of individuals and decrease the number of susceptible people on
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future days (Schimmel and Murawski, 1976). Such a phenomenon would lead to a distributed
lag function that is negative for certain periods and, when summed over the relevant time period
after an air pollution episode, may result in a cumulative effect that is smaller than relative risk
estimates obtained from single-lag models (Zeger et al., 1999; Dominici et al., 2002b; Zanobetti
et al., 2000).

The National Morbidity, Mortality, and Air Pollution Study, the ‘Air pollution and health:
a European approach’ study and the MCAPS all make clear the substantial advantages of
the multisite approach to assessing the short-term health risks of air pollution. Combining
information across locations improves the precision of relative risk estimates and allows for the
examination of variation in estimates across locations. Hence, there is a need for new method-
ology to allow the application of DLMs to reap the same benefits.

We introduce a Bayesian hierarchical distributed lag model (BHDLM) for estimating the dis-
tributed lag function relating PM air pollution exposure to hospitalizations for cardiovascular
and respiratory diseases. We describe a specific prior distribution for constraining the distrib-
uted lag function and we propose a hierarchical structure for combining information about
the shape of the distributed lag function across multiple locations. We also show a connection
between our BHDLM and penalized spline modelling.

We apply our model to a national database of PM2:5-measurements and hospitalizations
in the USA covering the years 1999–2002. The results include estimates of the national and
county-specific distributed lag functions that reflect the contributions of all relevant sources of
information as well as their uncertainties. We also obtain estimates of the cumulative effect of
PM2:5 on hospitalizations in a 2-week period after an increase in levels and compare them with
estimates that are obtained from single-lag models. In addition to providing national estimates
for the health risks of PM, our model can be used to explore variation in the risks across regions
of the country and an assessment of this variation can potentially relate health risks to different
sources of PM air pollution. Finally, we provide the R code that was used for fitting this model
on the Web site for this paper at http://www.biostat.jhsph.edu/rr/BHDLM/.

2. Hierarchical distributed lag model

Given time series data y1, y2, . . . on an outcome such as daily hospitalization counts, and cor-
responding time series data x1, x2, . . . on an exposure such as ambient air pollution levels, a
log-linear Poisson DLM of order L specifies

yt ∼ Poisson.mt/,

log.mt/=
L−1∑

l=0
μlxt−l .1/

for t �L−1. The vector of coefficients

μ= .μ0, μ1, . . . , μL−1/,

as a function of the lag number (l = 0, . . . , L − 1), is what we call the distributed lag function.
This function is sometimes referred to as the impulse–response function because it describes
the effect on the outcome series of a single impulse in the exposure series (Chatfield, 1996). For
example, if we have an exposure series of the form x0 =1, x1 =0, x2 =0, . . . , i.e. a spike at t =0,
then the log-relative risk (over L days) that is associated with that spike is ξ =ΣL−1

l=0 μl. We define
100{exp.10ξ/− 1} to be the cumulative percentage increase in hospitalizations over an L-day
period associated with an increase in pollution of 10μg m−3 (a standard increment for reporting
particle air pollution relative risks).
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2.1. Single-county model
Our approach begins with a model for air pollution and hospitalization data in a single location
such as a county. This model relates day-to-day changes in air pollution levels to day-to-day
changes in rates of hospitalization for a given county, controlling for other time varying factors
that might confound the relationship of interest.

Let the vector y = .y1, y2, . . . , yT / represent the daily time series of hospitalization counts for
a county and let the vector d be the daily time series of the numbers of people at risk. The matrix
X represents the exposure of interest and includes the corresponding time series of air pollution
levels and lagged versions of that series. X is of dimension T × L, where L is the order of the
DLM. In our set-up, the first column of X is the original air pollution time series (lag 0), the
second column is the original series lagged by 1 day (lag 1), etc. We also observe p other time
varying covariates which are combined in a T ×p matrix Z. Then our single-county log-linear
Poisson model is of the form

y|X, Z ∼ Poisson{m.μ, β/},

log{m.μ, β/}=Xμ+Zβ+ log.d/
.2/

where the length L vector of parameters μ is the distributed lag function and parameters in β
are nuisance parameters.

In the county-specific model (2), we incorporate into Z certain time varying factors that
might confound the relationship between air pollution and hospitalization (Kelsall et al., 1997;
Dominici et al., 2002a). In particular, we include smooth functions of average daily temperature,
dewpoint temperature and indicators for the day of the week. We also include a smooth function
of time to adjust for seasonal variation that is common to both the air pollution and the hospit-
alization time series. This smooth function of time is modelled by using natural splines and the
natural spline basis is included in Z. Further details regarding the approaches to confounding
adjustment in time series studies of air pollution and health can be found in Peng et al. (2006)
and Welty and Zeger (2005).

2.2. Constraining the distributed lag function
The rationale behind our approach to constraining the distributed lag function μ is that the
effects of air pollution at early lags are not well understood because of our lack of knowledge
about biological mechanisms and the time course of the disease process within the popula-
tion. In addition, competing hypotheses that were mentioned previously about the shape of the
distributed lag function suggest that fewer constraints should be placed at early lags.

At longer lags there are both substantive and methodological justifications for assuming that
the effects of air pollution on the outcome should approach zero smoothly. First, there is little
evidence, epidemiological or toxicological, that short-term increases in air pollution have effects
that extend beyond a few days or a week. For example, toxicological experiments conducted
in rats and humans indicate that symptoms of inflammation generally resolve within a week
(Clarke et al., 1999; Lay et al., 1999). Even in such an extreme scenario as the London fog
of 1952, where pollution reached levels that were 100 times today’s levels, the bulk of excess
mortality occurred within 2 weeks of the initial event (Bell and Davis, 2001).

The second justification for assuming that the effects of air pollution approach zero as the lag
increases is methodological and concerns the potential confounding by season. Although there
may indeed be longer-term effects of short-term increases in air pollution, say of the order of
many weeks or months, it is difficult to disentangle such effects from the much more powerful
effects of seasonal factors such as influenza epidemics and other unmeasured phenomena. As
mentioned in Section 2.1, we typically include a smooth function of time in the county-spe-
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cific model to remove such seasonal variation from the data. Once variation in PM2:5 at longer
timescales has been removed, we cannot hope to estimate associations that extend into those
timescales. Hence, the choice of how long a lag to examine is closely connected to the adjustment
for potential confounding by seasonal factors. Our choice of which timescales of variation to
retain and which to remove is based on extensive previous work and sensitivity analysis in this
area (Peng et al., 2006; Dominici et al., 2003; Zeger et al., 1999).

For a single county, we can constrain the distributed lag function μ by specifying a prior
distribution

μ|γ ∼N{0, σ2
γ Ω.γ/} .3/

where the vector μ= .μ0, μ1, . . . , μL−1/ contains the values of the distributed lag function at
each lag l and γ = .γ1, γ2/ controls the nature of the constraint on the distributed lag function.

The covariance matrix Ω is parameterized by the vector γ = .γ1, γ2/ where γ1 controls the rate
at which the variance of the distributed lag function coefficients taper to 0 and γ2 controls the
rate at which neighbouring coefficients become more correlated. Specifically, we assume that
the variance of μl tapers to 0 exponentially as a function of l, so that var.μl/=σ2

γ exp.−γ1l/ for
l=0, 1, 2, . . . , L−1. We further assume that the covariance of neighbouring coefficients at lags
l1 and l2 (for l1 �= l2) is

cov.μl1 , μl2/= σ2
γ{1− exp.−γ2l1/}{1− exp.−γ2l2/} exp{−γ1.l1 + l2/=2}√

.[{1− exp.−γ2l1/}2 + exp.−2γ2l1/][{1− exp.γ2l2/}2 + exp.−2γ2l2/]/

so that neighbouring coefficients at large lags have a correlation that is close to 1. Greater
detail about the construction of this covariance matrix can be found in Welty et al. (2008). The
parameter σ2

γ is the prior variance of μ0, the first distributed lag coefficient.
Samples from the prior distribution in distribution (3) for various values of γ1 and γ2 are

shown in Fig. 1. The possibilities range from completely uncorrelated lag effects in Fig. 1(a)
(γ1 =γ2 =0) to highly constrained lag effects in Fig. 1(i) (γ1 =γ2 =1). Given enough prior infor-
mation one could feasibly choose fixed values for γ1 and γ2 or, lacking such information, place
a hyperprior distribution on these parameters, as we do (see Section 2.3.1).

2.3. Combining information across counties
The approach that was described in Section 2.2 is limited to estimating the distributed lag func-
tion for a single county. In this section we extend the model to handle situations when time
series data are available from multiple counties.

At the county level, we use the log-linear Poisson model for the county-specific hospital
admissions rates and air pollution data. For each county c=1, . . . , n, we have

yc|Xc, Zc ∼ Poisson{mc.θc, βc/},

log{mc.θc, βc/}=Xcθc +Zcβc + log.dc/:
.4/

A direct extension of the single-county model would assume a common association between air
pollution and hospital admissions across counties. Rather than assume a common association,
we allow each county to have its own parameter θc to allow for some heterogeneity between
counties.

We assume that each of the county-specific distributed lag functions θc is normally distributed
around a ‘national average’ distributed lag function μ,

θc|μ, η, σ2
η ∼N{μ, σ2

η Ω.η/} .5/
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Fig. 1. Samples from the prior distribution for the constrained distributed lag function (grey regions indi-
cate pointwise 95% intervals; a model with γ1 D γ2 D 0 has uncorrelated lag effects whereas a model with
γ1 D γ2 D 1 is highly constrained): (a) γ1 D 0 and γ2 D 0; (b) γ1 D 0 and γ2 D 0:5; (c) γ1 D 0 and γ2 D 1; (d)
γ1 D 0:5 and γ2 D 0; (e) γ1 D 0:5 and γ2 D 0:5; (f) γ1 D 0:5 and γ2 D 1; (g) γ1 D 1 and γ2 D 0; (h) γ1 D 1 and
γ2 D0:5; (i) γ1 D1 and γ2 D1

where the matrix Ω is constructed in the same manner as described in Section 2.2 except now
parameterized by the vector η = .η1, η2/. The matrix Ω.η/ describes the unexplained variation
or heterogeneity across counties of the county-specific distributed lag functions θc.

The interpretation of Ω.η/ here is that we assume a priori that there will be more variation
across counties in the coefficients corresponding to early lags and less variation in the coefficients
corresponding to longer lags. Large values of σ2

η allow for inferences about early lag values to
be weighted in favour of the county-specific data; the amount of shrinkage towards the national
average increases with lag. Smaller values of σ2

η favour more shrinkage towards the national
average at early lags. Here, we specifically take advantage of the multisite context by exploring
the variation in the shapes of the county-specific distributed lag functions. Such unexplained
variation may exist, for example, because of varying composition of PM across the country or
because of varying susceptibilities of the populations.

We assume that the prior distribution for the national-average-distributed lag function μ is

μ|γ, σ2
γ ∼N{0, σ2

γ Ω.γ/}, .6/
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where Ω has the same form as in distribution (5) but is parameterized by the vector γ = .γ1, γ2/

and σ2
γ is the prior variance of μ0, the national average effect at lag 0. This formulation is

analogous to the single-county model in Section 2.2.

2.3.1. Hyperprior specification
To complete the model specification, the parameters η and γ are each assumed to have uniform
hyperprior distributions over a fixed range. The ranges of the η- and γ-parameters allow for
an unconstrained distributed lag function as well as some heavily constrained and smooth dis-
tributed lag functions (details of the ranges are given in Appendix A). Exploratory analyses
indicated that there was little information in the data to estimate jointly ση and σγ as well as η
and γ (see for example Schmidt et al. (2007)). Therefore, we set ση and σγ to be approximately
10 times the square root of the variance of the maximum likelihood estimate of μ0. These values
of ση and σγ ensure that, even for highly constrained models (i.e. large values of η or γ), the
prior has little influence over the coefficients corresponding to the early lags. Sensitivity analysis
indicates that the relevant posterior distributions are not substantially affected as long as the
values of ση and σγ are not too small (Welty et al., 2008).

We implement a Gibbs sampler to obtain samples from the posterior distributions of the
unknown parameters μ, γ, η and θc for c = 1, . . . , n. Full details of the sampling procedures
can be found in Appendix A.

2.4. Two-stage distributed lag models
One approximation to our BHDLM that was described in Section 2.3 is the following two-
stage DLM. At the first stage, a distributed lag function is estimated independently for each
location by using log-linear Poisson regressions. This first-stage distributed lag function can
be either constrained or unconstrained. Given the estimates of the distributed lag function for
each county θ̂c and their covariances Σ̂c obtained by using county-specific regressions, we use
a normal approximation to the Poisson likelihood and we assume that

θ̂c|θc ∼N .θc, Σ̂c/:

Given the normal approximation to the likelihood, we further assume that

θc|μ∼N .μ, Ψ/,

where Ψ is an unconstrained L × L covariance matrix. Estimates of μ that are obtained by
using the two-stage approach are analogous to those obtained by using the BHDLM that was
described in Section 2.3. The two-stage approach has been used in numerous previous studies
and is attractive for its computational simplicity.

For comparison with our model, we implemented a specific case of the two-stage approach
that was described above. Within each county c, we assume a constrained distributed lag function

log.E[Yc
t ]/=θc

0x̄c
t,0−2 +θc

1x̄c
t,3−6 +θc

2x̄c
t,7−13 +other predictors

where

x̄c
t,0−2 = 1

3

2∑

l=0
xc

t−l,

x̄c
t,3−6 = 1

4

6∑

l=3
xc

t−l
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and

x̄c
t,7−13 = 1

7

13∑

l=7
xc

t−l

are simply running means of the specified lengths. This model is constrained at the county
level in the sense that the effects of pollution at lags 0–2, lags 3–6 and lags 7–13 are restricted
to be constant respectively, so that the distributed lag function resembles a step function. We
have chosen this model for comparison largely because of the simplicity and computational
efficiency with which we can estimate the parameters. In addition, this type of model has been
used previously in the literature (Bell et al., 2004; Welty and Zeger, 2005).

Posterior samples for the parameters μ and Ψ for this model are obtained by using the
two-level normal independent sampling estimation software of Everson and Morris (2000).
Although the county-specific DLM that is specified here is constrained to be a step function,
the second-level covariance matrix Ψ here is completely unconstrained. This approach differs
from our model, where the county-specific function in expression (4) can vary freely but the
second-level covariance matrix Ω.η/ is constrained.

2.5. Connection to penalized splines
Our BHDLM can be reformulated as a penalized spline model where the prior distributions
in expressions (5) and (6) induce a special type of penalty for constraining the county-specific
distributed lag functions and combining information across counties. To show this connection,
we shall use the normal approximation of our model to allow the computations to be written
in closed form.

Let θ̂c and Σ̂c be the maximum likelihood estimates of the distributed lag coefficients and the
corresponding covariance matrix for county c. We shall assume a normal distribution for θ̂c so
that the estimated distributed lag function θ̂c can be modelled as a linear combination of basis
functions, θ̂c =Uαc +ε, where ε∼N .0, Σ̂c/. U is an L×k basis matrix and αc is a k-vector of
coefficients. The penalized spline solution solves the following optimization problem:

min
αc

{.θ̂c −Uαc/
′Σ̂−1

c .θ̂c −Uαc/+α′
cD

−1αc},

where D−1 is a penalty matrix which we assume incorporates a scalar penalty parameter. Since
the penalty term α′

cD
−1αc is proportional to the minus log-density of a normal distribution,

we can rewrite the problem as

θ̂c|Uαc ∼N .Uαc, Σ̂c/,

αc ∼N .0, D/ .7/

where the solution is the posterior mode of αc under the normal prior in distribution (7).
Given expressions (5) and (6), we can write the marginal distribution of θc as

θc ∼N{0, Ω.η/+Ω.γ/} .8/

where we have absorbed σ2
η and σ2

γ into Ω.η/ and Ω.γ/ respectively, to reduce the clutter. The
distribution for αc in expression (7) implies that Uαc ∼N .0, UDU ′/. On the basis of our pre-
vious notation, θc =Uαc, so the (inverse) penalty matrix D must satisfy UDU ′ =Ω.η/+Ω.γ/,
which has the solution

Dη,γ = .U ′U/−1U ′{Ω.η/+Ω.γ/}U.U ′U/−1: .9/

Now we have shown that our prior distribution on θc can be translated into a penalty matrix
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for spline coefficients αc in a penalized spline problem. Given values of η and γ and using the
penalty matrix in equation (9), we can calculate the penalized spline coefficient estimates as
α̂c =Dη,γU ′.UDη,γU ′ + Σ̂c/

−1θ̂c and the smoothed county-specific distributed lag function for
county c is Uα̂c.

Similar calculations demonstrate how penalized splines can be used to combine the county-
specific distributed lag functions θc across counties. Analogously to expression (7), we can write
the second level of our hierarchical model as

θc|Wδ ∼N{Wδ, Ω.η/} .c=1, . . . , n/,

δ ∼N .0, H/ .10/

where W is a spline basis matrix, δ is a vector of coefficients and H is a penalty matrix in the
penalized spline problem. The distribution in expression (6) and the prior for δ in expression
(10) imply that we need to find a matrix H such that WHW ′ =Ω.γ/. The solution for H has the
form

Hγ = .W ′W/−1W ′ Ω.γ/W.W ′W/−1

and we can subsequently solve for

δ̂ =HγW ′{WHγW ′ +Ω.η/}−1θ̄,

where θ̄= .1=n/Σn
c=1θc.

We can see that, if we replace the basis matrices U and W with the L × L identity matrix,
then we revert to our original formulation and obtain the same answers as our original Bayesian
hierarchical model. Our model places a prior directly on the distributed lag function, whereas
the penalized spline approach places a prior on the corresponding spline coefficients. In this
application it seems more natural to assume a prior distribution for the distributed lag function
directly because prior information is available in that domain.

3. Data

We apply our methods to national databases of hospitalization and ambient PM2:5-measure-
ments. The hospitalization data consist of daily counts of hospital admissions for the years
1999–2002 constructed from the national claims history files of the US Medicare system, which
contain the billing claims of all Medicare enrollees. Medicare enrollees make up almost the
entire US population over 65 years of age, or approximately 48 million people. Each billing
claim that was obtained from the national claims history files contains the date of service, treat-
ment, disease classification (via international classification of diseases, ninth revision, codes),
age, gender, self-reported race and place of residence (five-digit zip code and county). The daily
counts for a given county were computed by summing the total number of hospitalizations with
a primary diagnosis for a specific disease. For computing hospitalization rates, a corresponding
time series of the numbers of individuals at risk in each county for each day was constructed.

The PM2:5-data were obtained from the US Environmental Protection Agency’s air quality
system database, which makes available data from a national network of monitors. Before 1999,
the Environmental Protection Agency collected data on PM that was less than 10 μm in diam-
eter (PM10), generally on a 1-in-6 day basis (i.e., for every 6 days, one measurement of PM10
is made). Such a data collection pattern ruled out the use of DLMs, which require data to be
collected on consecutive days (although daily PM10-data were collected for about 15 counties).
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Fig. 2. Locations of 94 US counties which have daily data for PM less than 2.5 μm in diameter for 1999–2002

Fig. 3. National average distributed lag functions for (a) COPDAE and (b) ischaemic heart disease from
the BHDLM applied to 94 US counties, 1999–2002: each plot shows the posterior mean (white curve) and
pointwise 95% posterior intervals (grey regions) for each lag coefficient

Beginning in 1999, the Environmental Protection Agency began to collect PM2:5-data, generally
on a 1-in-3 day basis, although there are over 100 counties where measurements are taken every
day. With the emergence of the new PM2:5 monitoring network, we can fit DLMs to data from
more counties than previously possible. Some counties contained more than one PM2:5-mon-
itor, in which case we took a 10% trimmed mean of the daily values across monitors. In cases
where there were fewer than 10 monitor readings, we dropped the lowest and highest values and
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averaged the remainder. Finally, temperature and dewpoint temperature data were assembled
from the National Climatic Data Center on the Earth-Info compact disc database and linked
by county with the pollution and hospitalization data.

This analysis was necessarily restricted to the counties for which daily data on PM2:5 were
available. The counties included were further constrained to have a population over 200000 and
PM2:5-data spanning at least one full year. The resulting study population resided in 94 counties
and consisted of 6.3 million Medicare enrollees living on average 6 miles from a PM2:5-monitor.
The locations and populations of the 94 counties are shown in Fig. 2.

For all the counties that were used in this analysis, there were occasional missing PM2:5-val-
ues. With the exception of the year 1999, when monitors in some counties were just beginning
to come into service, the missingness tended to be sporadic and seemingly at random. Rather
than treat the missing PM2:5-values specially or implement an imputation scheme, we chose
simply to drop missing observations and to analyse only the days for which observations were
available. One issue that arises by taking this approach is that, when fitting a DLM of order L,
a single missing value in the exposure series propagates to create L missing observations in the
health effects model. Fortunately, the number of missing PM2:5-values was sufficiently small
that this propagation did not cause a serious problem. There were few, if any, missing values in
the hospitalization and meteorological data.

4. Results

We applied the BHDLM to the 94 counties with Medicare, air pollution and weather data that
were described in Section 3. The data for each county spanned T =1461 days (the four years from
1999 to 2002) and we chose to examine two specific causes of hospitalization: chronic obstruc-
tive pulmonary disease with acute exacerbation (COPDAE) and ischaemic heart disease. These
outcomes were chosen because they represent common respiratory and cardiovascular diseases
and have been shown in previous studies to be strongly associated with PM2:5-exposure. For
the distributed lag function, we chose to fit a model with a maximum lag of 2 weeks, so that

Fig. 4. Joint marginal posterior distributions for γ1 and γ2 for both (a) COPDAE and (b) ischaemic heart
disease
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Fig. 5. County-specific Bayesian distributed lag functions (with pointwise 95% posterior intervals) showing
the effect of PM2:5 on hospitalization for COPDAE: only the largest 25 counties (by population) are shown
here, with the largest county (Los Angeles, California) in the top left-hand corner

L=14 in model (1). As a comparison we also applied the step function DLM (step DLM) that
was described in Section 2.4 where the model is fitted by using the two-stage approach.

The national average distributed lag functions that were estimated by the BHDLM for COP-
DAE and ischaemic heart disease are shown in Fig. 3. Each of these plots shows the posterior
mean for μ plotted as a function of lag for each outcome as well as pointwise 95% posterior
intervals for each lag coefficient. At each lag the plotted coefficient can be interpreted as the
percentage increase in hospitalization for an increase in PM2:5 of 10 μg m−3. For COPDAE,
Fig. 3 suggests that PM2:5 is associated with two ‘waves’ of admissions, with the first arriving
1 day after the increase and the second arriving a few days later. For ischaemic heart disease,
there is an increase in admissions of about 0.23% on the same day, followed by a decrease in
admissions of approximately 0.34% on the following day. At lag 2, the relative risk jumps to an
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Fig. 6. County-specific Bayesian distributed lag functions (with pointwise 95% posterior intervals) showing
the effect of PM2:5 on hospitalization for ischaemic heart disease: only the largest 25 counties (by population)
are shown here, with the largest county (Los Angeles, California) in the top left-hand corner

increase in admissions of 0.6%, beyond which the distributed lag function for ischaemic heart
disease is essentially zero.

The joint marginal posterior distributions for γ1 and γ2, which control the tapering and
smoothness of μ, are shown in Fig. 4 for both COPDAE and ischaemic heart disease. Large
values of γ1 indicate a strong tapering of the lag coefficients towards 0 whereas large values of
γ2 indicate a very smooth distributed lag function. The data for both outcomes prefer a large
value for γ1, indicating strong variance tapering, but for ischaemic heart disease the marginal
distribution for γ2 is shifted somewhat higher than that of COPDAE.

The county-specific Bayesian distributed lag functions for COPDAE and ischaemic heart dis-
ease are shown in Figs 5 and 6 respectively. Each figure shows the posterior mean and pointwise
95% posterior intervals of θc for the largest 25 counties in the study. For COPDAE, the estim-
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Fig. 7. Estimates and 95% posterior intervals for the cumulative effect of PM2:5 for (a) COPDAE and (b)
ischaemic heart disease: estimates for ‘MCAPS’ and ‘single lag (94 counties)’ come from single-lag models
applied to the original MCAPS and to the 94 counties that were used in this study respectively (lag 0 for
COPDAE and lag 2 for ischaemic heart disease); the ‘step DLM’ estimates come from a 14-day DLM using a
step function (county-specific estimates are pooled by using the two-stage approach); the ‘BHDLM’ estimates
come from applying the BHDLM using a 14-day distributed lag

ated county-specific distributed lag functions are a mix of shapes including large immediate
effects (Sacramento, California, and Broward, Florida), somewhat smaller delayed effects (Los
Angeles, California, Franklin, Ohio, and Pinellas, Florida), and more moderate effects spread
out over a longer period of time (Bronx, New York, Palm Beach, Florida, and Salt Lake, Utah).
Ischaemic heart disease appears to exhibit somewhat less heterogeneity in the shapes of the
distributed lag functions with most of the effects occurring at lags 0–2. In Fairfax, Virginia, and
Pinellas, Florida, counties there appears to be some evidence of mortality displacement.

Fig. 7 shows the posterior mean and 95% posterior intervals of the association between PM2:5
and both outcomes. The estimates were obtained from two single-lag models and two DLMs.
In the single-lag models we report the estimate for a given lag and for the DLMs we report the
cumulative effect over 14 days. For each outcome we plot

(a) the estimate that was originally reported in the MCAPS for a single-lag model applied to
204 US counties (‘MCAPS’),

(b) the estimate that was obtained from a single-lag model (‘single lag’) applied to the 94
counties that were used in this study (for the exposure lag we chose lag 0 for COPDAE
and lag 2 for ischaemic heart disease, the same lags as used in the MCAPS),

(c) the estimate that was obtained from using the step function model via the two-stage
approach (‘step DLM’) and

(d) the estimate that was obtained from our BHDLM (‘BHDLM’).



Estimating Risk of Hospitalization Associated with Air Pollution 17

For the COPDAE outcome, the MCAPS point estimate was reported as 0.91 with a 95%
posterior interval of (0.18, 1.64) and the posterior mean from the BHDLM model was 0.77
(−2:09, 3.62). We can see from the difference in posterior intervals from the ‘MCAPS’ and the
‘single-lag’ estimates that the loss of 110 counties in this study results in only a small loss of
efficiency in the estimate of the single-lag effect.

In the DLM, the increased number of parameters introduced (even in the three-parameter step
DLM model) results in a substantial increase in the variance of the cumulative effect estimate.
For the ischaemic heart disease outcome, the estimate from the BHDLM is 0.66 (−1:53, 2.85)
compared with the MCAPS estimate of 0.44 (0.02, 0.86). This higher effect was also captured
by the step function DLM but the estimate from the BHDLM appears to exhibit less variance
in its estimate.

4.1. Regional variation
One significant advantage of our analysis is that it provides the opportunity to examine var-
iation in the county-specific distributed lag functions across locations and regions. Variation
in the composition of PM2:5 may correspond to variation in the estimated distributed lag func-
tions if the concentrations of the most toxic constituents of the PM mixture vary across locations
(Bell et al., 2007a; Lippmann et al., 2006). Variation in the estimated relative risks may also indi-
cate regional variation in the susceptibilities in the underlying populations to exposure to PM2:5.

We compared the estimated county-specific distributed lag functions for 53 counties in the
northern region of the USA (defined as having latitude above 36.5◦) with 41 counties in
the southern region of the USA to see whether there were any systematic differences. Given the
N posterior samples of the county-specific distributed lag functions θc, we calculated regional
averages

θ
.i/
R = 1

nR

∑

c∈IR

θ.i/
c

for each of the posterior samples i, where R indicates the region (north or south) and IR is the
index set for the counties in region R. The posterior mean θ̄R was then computed by averaging
θ

.i/
R over the posterior samples.
Examination of the cumulative effects for the north and south show a clear regional differ-

Fig. 8. Joint posterior distributions of the cumulative effects for the north ( ) and south (- - - - - - - ) regions
for (a) the COPDAE and (b) the ischaemic heart disease outcomes
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ence. For each posterior sample we calculated ξ
.i/
R =ΣL−1

l=0 θ
.i/
R,l and plotted the marginal posterior

distributions of the north and south cumulative effects in Fig. 8. For COPDAE, the bulk of the
posterior mass for the south is to the right of the posterior for the north, with a posterior prob-
ability P.ξsouth > ξnorth|data/=0:93. For ischaemic heart disease, the posterior distribution for
the north is centred to the right of the posterior for the south, indicating a larger effect in the
north with P.ξnorth > ξsouth|data/=0:95.

4.2. Sensitivity analysis
One concern that is raised by applying our Bayesian DLM is the possibility that placing con-
straints on the parameters corresponding to longer lags would somehow introduce bias in
estimates of parameters corresponding to shorter lags. To investigate this concern we estimated
the national average distributed lag function by using both our BHDLM and a completely
unconstrained two-stage model. This unconstrained model specifies that, for a given county c,

log.E[Yc
t ]/=

13∑

l=0
θc

l xc
t−l + other predictors,

and national average estimates are obtained by taking a weighted average of the county-specific
distributed lag functions.

Estimates for both the unconstrained model and the BHDLM are plotted in Fig. 9. We can
see that, for ischaemic heart disease, the estimates at lags 0–3 for both models are very simi-
lar, after which the BHDLM estimates are all close to 0. For COPDAE the estimates for lags
0–2 are relatively close; after lag 3 the BHDLM estimates become much more smooth than
the unconstrained estimates. For both outcomes it appears that imposing constraints on the

Fig. 9. Comparison of distributed lag functions estimated by the BHDLM (white curves) and by the two-stage
approach using the estimated coefficients obtained from unconstrained county-specific regression models
(black curves) (grey regions indicate pointwise 95% confidence intervals for two-stage model estimates): (a)
COPDAE; (b) ischaemic heart disease
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Fig. 10. Comparison of the BHDLM (———) with a model that does not allow for between-county variation
(- - - - - - -) for (a) COPDAE and (b) ischaemic heart disease

longer lags does not substantially bias the estimates at shorter lags in the sense that estimates
at shorter lags are similar to those that would have been obtained by using an unconstrained
model.

The structure of our prior distribution on the distributed lag function inherently places
a ‘higher standard of evidence’ on the longer lags relative to the shorter lags. Since we believe
a priori that it is more likely for there to be a strong association at lag 0 than at lag 13, the evidence
for an association at lag 13 would have to be very strong for us to believe a posteriori that the
association is non-zero. The posterior distributions of γ1 and γ2 and the smoothness indicated
by the BHDLM model in Fig. 9 suggest that the evidence in the data for any association between
PM2:5 and hospital admissions at longer lags is very weak.

Another question that arises is to what extent allowing between-county variation in the model
affects model results and inferences. As a sensitivity analysis we fit a model which does not allow
for between-county heterogeneity in the distributed lag function and assumes a common func-
tion for all counties. The posterior distributions of the cumulative effects for the BHDLM and
the no-heterogeneity model are plotted in Fig. 10. For both outcomes, the posterior for the
cumulative effect that is obtained from the no-heterogeneity model is more narrowly dispersed
than the BHDLM posterior. Given the variation in the estimates, the two models are centred at
similar values, although the no-heterogeneity model is shifted slightly to the right. In general, the
no-heterogeneity model and the BHDLM are centred at similar values but the no-heterogeneity
model exhibits somewhat less posterior uncertainty.

5. Discussion

We have proposed a BHDLM for estimating the distributed lag between ambient air pollution
levels and rates of hospitalization. The model uses a prior distribution that constrains the time
course of the short-term health effects of air pollution and combines information from multiple
locations. We have applied the model to a national air pollution and hospitalization database for
US residents who are enrolled in Medicare, examining the relationship between PM2:5-exposure
and hospitalization for ischaemic heart disease and COPDAE.

Our model builds on the work of Welty et al. (2008) and Zanobetti et al. (2000) by smoothing
distributed lag function estimates across lags and by providing a method for combining these
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functions across locations where we assume more variability for parameters corresponding to
shorter lags and less variability for parameters corresponding to longer lags. In addition, the
hierarchical model lets us examine the range of shapes in the county-specific distributed lag
functions. We have established that our methodology is related to penalized spline modelling
with a special type of penalty and this connection, along with evidence from simulation studies
that were conducted by Welty et al. (2008), creates a basis for understanding the statistical
properties of our approach.

The national average distributed lag functions for COPDAE and ischaemic heart disease
indicate different time courses for the effect of PM2:5 on hospitalizations for these disease cat-
egories. The effect of PM2:5 on COPDAE admissions appears to be spread over a longer time
period than the effect on ischaemic heart disease admissions. The nature and characteristics of
acute exacerbations of COPD are known to be heterogeneous across people (Sapey and Stock-
ley, 2006) and exacerbations are often a cause of hospitalization after initial treatment outside
the hospital has failed (Seemungal et al., 2000). We found little evidence that the effect of an
increase in PM2:5-levels on hospitalizations for ischaemic heart disease extends beyond 2 days.
In addition, the shape of the distributed lag function for ischaemic heart disease suggests some
weak evidence of mortality displacement. Cardiovascular effects of PM are thought to be gen-
erally related to neurogenic and inflammatory processes (Pope et al., 2003). The results from our
analysis suggest that, for ischaemic heart disease in particular, the biological mechanism that
is involved has a relatively short time course, with the bulk of people admitted to the hospital
within 2 days of an increase in PM2:5-levels.

When estimating the association between PM2:5 and either health outcome, a bias–variance
trade-off appears to be involved in choosing between applying a single-lag model or a DLM.
Even with the national databases that were used here, estimation of the distributed lag function
resulted in a substantial increase in the variance of the cumulative effect compared with risk esti-
mates from single-lag models. Although we might consider the single-lag model’s restriction to
fixed lag effects a limitation (and potentially a source of bias), we must also consider the dramatic
increase in precision that the model provides. If the cumulative short-term effect of an increase in
air pollution levels is the sole parameter of interest, the benefits of the DLM’s greater flexibility
may not outweigh the cost of incurring much greater variability in the resulting estimate.

We should be careful not to overinterpret the findings of our analysis. Even with the con-
straints that are imposed by the prior, the uncertainty of the estimates in Fig. 3 is still large for
coefficients corresponding to early lags and all the estimates have posterior intervals spanning
zero. Although there appears to be substantial uncertainty in our estimation of the distributed
lag function and the cumulative effect, it should be noted that only 4 years of data were available
for this analysis. Previous applications of DLMs to air pollution and health data have generally
had more data available. For example, the study of Schwartz (1994) made use of 8 years of data
and the more recent study of Zanobetti and Schwartz (2008) examining ozone and mortality
used 12 years of data. We expect that, with on-going data collection, we should be able to achieve
levels of precision that are similar to previously published results.

One might question the interpretability of a national average distributed lag function in the
presence of substantial variation or heterogeneity across counties. However, the usefulness of
such an estimate depends ultimately on the aims of the analysis. From a regulatory standpoint,
national estimates are relevant because ambient air quality standards are set at the national level
and apply equally to all states. The estimates of uncertainty that are obtained by accounting for
heterogeneity across counties as well as statistical variation within counties are particularly use-
ful for policy makers. If standards were to be set at the local or regional level, then an alternative
approach might need to be considered.
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The north–south comparison in Section 4.1 indicated an interesting contrast between the two
regions and merits further investigation. A possibility for future work could be to fit a spatial
model for the distributed lag function, assuming that neighbouring counties are more similar
than distant counties. The regional differences in the shapes of the distributed lag functions
could be due to differences in the composition of PM2:5 (National Research Council, 2004).
The major constituents of PM pollution in the north-eastern US region include sulphate and
ammonium ion, which originate largely from coal power generation sources, whereas PM in the
south-eastern region generally contains more silicon, an element that is related to crustal mate-
rial and mechanical processes (Bell et al., 2007a). Also, the change in latitude from the north to
the south covers a wide range of temperatures and climates which may alter the susceptibilities
of populations to air pollution exposure.

One limitation of our application of the BHDLM is the reliance on the Poisson distribu-
tion in the county-specific model (2). Whereas previous time series studies of air pollution
and health have suggested that there is relatively little overdispersion in the residuals, a more
flexible alternative might be to use a generalized Poisson model (Consul and Famoye, 1992).
Another point of discussion concerns the prior distributions that were used in this applica-
tion. We have placed uniform hyperprior distributions on η and γ which place equal prior
weight on models which may not be equally plausible. Nevertheless, the posterior distribu-
tions in Fig. 4 suggest that there is some information in the data to choose between these
models.

It should be noted that the marginal posterior distribution for γ1 is concentrated on the
boundary of the allowable range for γ1, making the interpretation of that posterior distribution
potentially sensitive to the location of the boundary. As noted in Appendix A, we have con-
structed this range to be as wide as possible to encompass a range of distributed lag functions. It
is possible that the uniform hyperprior for γ1 is not optimal in this situation and a modification
of our approach is a potential topic for further development.

The specific use of an exponential decay in the variance of the lag coefficients does affect the
resulting shape of the estimated distributed lag function somewhat. We have explored alterna-
tive decay functions such as a half-normal and power law and our analyses indicate that these
alternatives do not affect the substantive conclusions of the investigation.

Our model did not include any interactions between levels of PM2:5 on different days or with
averages of PM2:5-levels over several days. It is plausible that such interactions exist and, if so,
estimates from our model are likely to be biased. In our initial exploratory analyses models
containing simple interactions were fitted and we generally found little evidence to support
their inclusion. Nevertheless, the development of a more structured approach to the estimation
of interactions as well as the development of appropriate prior distributions are an important
direction for future work.

Finally, Medicare data are collected for administrative purposes and diagnoses of disease are
known to be subject to some missclassification. However, such missclassification would only
bias our results if the daily pattern of diagnosis and coding varied in a way that was correlated
with PM2:5-levels.

The principal benefit of the DLM is its ability to estimate the shape of the distributed lag
function relating increases in air pollution to health outcomes in short periods of time after an
air pollution episode. Our model provides a useful parameterization that can easily incorporate
prior knowledge and be applied to large multisite databases. Over time, as more data become
available from national databases, our model could be applied to track the health effects of PM.
Although the results of our analysis are interesting and suggest some possible hypotheses, more
focused studies (perhaps involving compositional data on PM2:5 or susceptible subpopulations)
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will have to be conducted to obtain more precise information about the biological mechanisms
that are involved.

Although we have focused here on the application of our model to air pollution and health
data, our model should be applicable to a wide range of substantive areas where the effects of
an exposure or input on an outcome is spread over multiple time points. DLMs have already
been used extensively in economics where the effect of certain indicators on economic outputs
of interest often have a distributed lag structure. Although past uses of DLMs have been in
the single-location setting (e.g. Almon (1965) and Leamer (1972)), the increasing availability of
data from around the USA and the world increases the relevance of our hierarchical model.
In addition to economics, our BHDLM should be applicable more generally in the area of
environmental statistics. For example, a growing area of research involves the health impacts
of climate change and the effects of temperature on mortality and morbidity (e.g. Bell et al.
(2007b)). Since temperature data are much more abundant than air pollution data, application
of our BHDLM here seems potentially fruitful. In general, with the increasing sophistication
of data collection systems in many scientific areas providing more data from multiple locations,
the applicability and relevance of our model will probably increase.
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Appendix A: Details of Gibbs sampler

We implement a hybrid Gibbs sampler to sample from the posterior distributions of η, γ, θc (c=1, . . . , n)
and μ. Briefly, the full conditionals for η, γ and θc for c = 1, . . . , n are sampled by using a Metropolis–
Hastings rejection step and the full conditional for μ is sampled in closed form. All calculations were done
using R version 2.4.1 (R Development Core Team, 2006). We describe the procedures for sampling from
the full conditional distributions below.

(a) Sampling θc: to sample from the full conditional for θc we implement a Metropolis–Hastings rejec-
tion scheme. Sampling from the full conditional for θc requires evaluting the likelihood for county
c with both θc and the nuisance parameters in βc. Rather than assume a prior distribution for the
many nuisance parameters in βc, we evaluate the profile likelihood Lp.θc/ = maxβc

{Lf .θc, βc/},
where, for each given value of θc, we maximize the full Poisson likelihood Lf with respect to βc,
holding θc fixed. In the Metropolis–Hastings step taken to sample from the full conditional for
θc, we use the profile likelihood for θc to calculate the acceptance ratio for the proposal. The pro-
posal distribution for sampling from the full conditional of θc is constructed by first estimating θc

in a county-specific log-linear Poisson regression model to obtain θ̂c and its estimated covariance
matrix Σ̂c. If we assume as in the two-stage approach that θ̂c|θc ∼N .θc, Σ̂c/, we can compute the
conditional distribution of θc given θ̂c and the current values of μ and γ and use this conditional
distribution as a proposal distribution, i.e.

θÅ
c |θ̂c, μ, γ ∼N{μ+B1.θ̂c −μ/, σ2

γ.I −B1/ Ω.γ/} .11/

where B1 =σ2
γ Ω.γ/{Σ̂c +σ2

γ Ω.γ/}−1. Given the proposal distribution in expression (11), the full
conditional for θc is then proportional to

p.θc|·/∝Lp.θc/ ϕ{θc|μ, σ2
η Ω.η/}

where ϕ{θc|μ, σ2
η Ω.η/} is the multivariate normal density with mean μ and covariance matrix

σ2
η Ω.η/ and Lp.θc/ is the profile likelihood for θc.
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(b) Sampling μ: the full conditional for μ is proportional to

p.μ|·/∝
[ n∏

c=1
ϕ{θc|μ, σ2

η Ω.η/}
]
ϕ{μ|0, σ2

γ Ω.γ/}

=N{B2θ̄, .I −B2/σ
2
γ Ω.γ/}

where B2 =σ2
γ Ω.γ/{σ2

γ Ω.γ/+σ2
η Ω.η/=n}−1 and θ̄= .1=n/Σθc.

(c) Sampling η and γ: we put uniform priors on both η = .η1, η2/ and γ = .γ1, γ2/ and hence the full
conditionals for η and γ are

p.η|·/∝
n∏

c=1
ϕ{θc|μ, σ2

η Ω.η/}

and

p.γ|·/∝ϕ{μ|0, σ2
γ Ω.γ/}:

To preserve numerical stability, we placed upper and lower bounds on each parameter so that both
η1 and η2 were restricted to be in the range [0:2, 0:8] whereas γ1 and γ2 were restricted to be in the
range [0:05, 0:75]. These bounds were chosen on the basis of previous work and some exploratory
analysis. Upper bounds that were much larger than these values often produced covariance matri-
ces that were not invertible. We subsequently used uniform proposal distributions (restricted to the
appropriate ranges) and a Metropolis–Hastings rejection step to sample from the full conditionals
of η and γ.

The Gibbs samplers for each hospitalization outcome were each run for 40000 iterations with 10000
iterations discarded as burn-in. Acceptance percentages for the Metropolis–Hastings steps were tuned to
be between 10% and 30%. Convergence of the chains was diagnosed by estimating Monte Carlo standard
errors of the parameters by using the method of batch means that was described in Jones et al. (2006).

References

Almon, S. (1965) The distributed lag between capital appropriations and expenditures. Econometrica, 33, 178–196.
Bell, M. and Davis, D. (2001) Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic

consequences of acute exposure to air pollution. Environ. Hlth Perspect., 109, 389–394.
Bell, M. L., Dominici, F., Ebisu, K., Zeger, S. L. and Samet, J. M. (2007a) Spatial and temporal variation in

PM2:5 chemical composition in the United States for health effects studies. Environ. Hlth Perspect., 115, 989–
995.

Bell, M. L., Goldberg, R., Hogrefe, C., Kinney, P. L., Knowlton, K., Lynn, B., Rosenthal, J., Rosenzweig, C. and
Patz, J. (2007b) Climate change, ambient ozone, and health in 50 U.S. cities. Clim. Change, 82, 61–76.

Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M. and Dominici, F. (2004) Ozone and short-term mortality
in 95 US urban communities, 1987-2000. J. Am. Med. Ass., 292, 2372–2378.

Chatfield, C. (1996) The Analysis of Times Series: an Introduction, 5th edn. London: Chapman and Hall.
Clarke, R. W., Catalano, P. J., Koutrakis, P., Murthy, G. G., Sioutas, C., Paulauskis, J., Coull, B., Ferguson, S.

and Godleski, J. J. (1999) Urban air particulate inhalation alters pulmonary function and induces pulmonary
inflammation in a rodent model of chronic bronchitis. Inhaln Toxicol., 11, 637–656.

Consul, P. C. and Famoye, F. (1992) Generalized Poisson regression model. Communs Statist. Theory Meth., 21,
89–109.

Corradi, C. (1977) Smooth distributed lag estimators and smoothing spline functions in Hilbert spaces. J. Eco-
nometr., 5, 211–220.

Dominici, F., Daniels, M., Zeger, S. L. and Samet, J. M. (2002a) Air pollution and mortality: estimating regional
and national dose-response relationships. J. Am. Statist. Ass., 97, 100–111.

Dominici, F., McDermott, A., Zeger, S. L. and Samet, J. M. (2002b) Airborne particulate matter and mortality:
time-scale effects in four US Cities. Am. J. Epidem., 157, 1053–1063.

Dominici, F., McDermott, A., Zeger, S. L. and Samet, J. M. (2003) Airborne particulate matter and mortality:
timescale effects in four US cities. Am. J. Epidem., 157, 1055–1065.

Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L. and Samet, J. M. (2006) Fine
particulate air pollution and hospital admission for cardiovascular and respiratory diseases. J. Am. Med. Ass.,
295, 1127–1134.

Everson, P. J. and Morris, C. N. (2000) Inference for multivariate normal hierarchical models. J. R. Statist. Soc.
B, 62, 399–412.

Goodman, P. G., Dockery, D. W. and Clancy, L. (2004) Cause-specific mortality and the extended effects of
particulate pollution and temperature exposure. Environ. Hlth Perspect., 112, 179–185.



24 R. D. Peng, F. Dominici and L. J. Welty

Health Effects Institute (2003) Revised analyses of time-series studies of air pollution and health. Special Report.
Health Effects Institute, Boston.

Huang, Y., Dominici, F. and Bell, M. L. (2005) Bayesian hierarchical distributed lag models for summer ozone
exposure and cardio-respiratory mortality. Environmetrics, 16, 547–562.

Jones, G. L., Haran, M., Caffo, B. S. and Neath, R. (2006) Fixed-width output analysis for Markov Chain Monte
Carlo. J. Am. Statist. Ass., 101, 1537–1547.

Katsouyanni, K., Toulomi, G., Samoli, E., Gryparis, A., LeTertre, A., Monopolis, Y., Rossi, G., Zmirou, D., Bal-
lester, F., Boumghar, A. and Anderson, H. R. (2001) Confounding and effect modification in the short-term
effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 Project.
Epidemiology, 12, 521–531.

Kelsall, J. E., Samet, J. M., Zeger, S. L. and Xu, J. (1997) Air pollution and mortality in Philadelphia, 1974–1988.
Am. J. Epidem., 146, 750–762.

Lay, J. C., Bennett, W. D., Ghio, A. J., Bromberg, P. A., Costa, D. L., Kim, C. S., Koren, H. S. and Devlin, R. B.
(1999) Cellular and biochemical response of the human lung after intrapulmonary instillation of ferric oxide
particles. Am. J. Resp. Cell Molec. Biol., 20, 631–642.

Leamer, E. E. (1972) A class of informative priors and distributed lag analysis. Econometrica, 40, 1059–1081.
Lippmann, M., Ito, K., Hwang, J.-S., Maciejczyk, P. and Chen, L.-C. (2006) Cardiovascular effects of nickel in

ambient air. Environ. Hlth Perspect., 114, 1662–1669.
National Research Council (2004) Research Priorities for Airborne Particulate Matter, vol. IV, Continuing Research

Progress. National Research Council of the National Academies.
Peng, R. D., Dominici, F. and Louis, T. A. (2006) Model choice in time series studies of air pollution and mortality

(with comments). J. R. Statist. Soc. A, 169, 179–203.
Peng, R. D., Dominici, F., Pastor-Barriuso, R., Zeger, S. L. and Samet, J. M. (2005) Seasonal analyses of air

pollution and mortality in 100 US cities. Am. J. Epidem., 161, 585–594.
Pope, C. A., Burnett, R. T., Thruston, G. D., Calle, E., Thun, M. J., Krewski, D. and Goldeski, J. (2003) Car-

diovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general
pathophysiological pathways of disease. Circulation, 6, 71–77.

Pope, C. A. and Dockery, D. W. (2006) Health effects of fine particulate air pollution: lines that connect. J. Air
Wste Mangmnt Ass., 56, 709–742.

R Development Core Team (2006) R: a Language and Environment for Statistical Computing. Vienna: R Foun-
dation for Statistical Computing.

Roberts, S. (2005) An investigation of distributed lag models in the context of air pollution and mortality time
series analysis. J. Air Wste Mangmnt Ass., 55, 273–282.

Samoli, E., Touloumi, G., Zanobetti, A., Le Tertre, A., Schindler, C., Atkinson, R., Vonk, J., Rossi, G., Saez, M.,
Rabczenko, D., Schwartz, J. and Katsouyanni, K. (2003) Investigating the dose-response relation between air
pollution and total mortality in the APHEA-2 multicity project. Occupnl Environ Med., 60, 977–982.

Sapey, E. and Stockley, R. A. (2006) COPD exacerbations 2: aetiology. Thorax, 61, 250–258.
Schimmel, H. and Murawski, T. J. (1976) The relation of air pollution to mortality. J. Occupnl Med., 18, 316–333.
Schmidt, A. M., de Fátima da G. Conceição, M. and Morerira, G. A. (2007) Investigating the sensitivity of Gauss-

ian processes to the choice of their correlation function and prior specifications. J. Statist. Computn Simuln, to
be published.

Schwartz, J. (1994) Nonparametric smoothing in the analysis of air pollution and respiratory illness. Can. J.
Statist., 22, 471–488.

Schwartz, J. (2000) The distributed lag between air pollution and daily deaths. Epidemiology, 11, 320–326.
Seemungal, T. A. R., Donaldson, G. C., Bhowmik, A., Jeffries, D. J. and Wedzicha, J. A. (2000) Time course and

recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am. J. Resp. Crit. Care Med.,
161, 1608–1613.

Shiller, R. J. (1973) A distributed lag estimator derived from smoothness priors. Econometrica, 41, 775–788.
Welty, L. J., Peng, R. D., Zeger, S. L. and Dominici, F. (2008) Bayesian distributed lag models: estimating the

effects of particulate matter air pollution on daily mortality. Biometrics, to be published.
Welty, L. J. and Zeger, S. L. (2005) Are the acute effects of PM10 on mortality in NMMAPS the result of inade-

quate control for weather and season?: a sensitivity analysis using flexible distributed lag models. Am. J. Epidem.,
162, 80–88.

Zanobetti, A. and Schwartz, J. (2008) Mortality displacement in the association of ozone with mortality. Am. J.
Resp. Crit. Care Med., 177, 184–189.

Zanobetti, A., Schwartz, J., Samoli, E., Gryparis, A., Touloumi, G., Atkinson, R., Le Tertre, A., Bobros, J., Celko,
M., Goren, A., Forsberg, B., Michelozzi, P., Rabczenko, D., Aranguez, R. E. and Katsouyanni, K. (2002) The
temporal pattern of mortality responses to air pollution: a multicity assessment of mortality displacement.
Epidemiology, 13, 87–93.

Zanobetti, A., Wand, M., Schwartz, J. and Ryan, L. (2000) Generalized additive distributed lag models: quanti-
fying mortality displacement. Biostatistics, 1, 279–292.

Zeger, S. L., Dominici, F. and Samet, J. M. (1999) Harvesting-resistant estimates of pollution effects on mortality.
Epidemiology, 89, 171–175.


